aws alasan scatter free spin mahjong aws dominasi pgsoft teknik pemain aws fokus scatter wins1 perkalian aws irama scatter hitam wins3 aws logika grid mahjong ways aws mahjong wins3 rtp malam stabil aws meninjau alur mahjong ways aws metode scatter merah mahjong aws mitos scatter hitam rtp pragmatic aws pengelolaan dana mahjong ways2 aws perbanyak spin scatter mahjong aws perkalian besar gates olympus aws perkalian scatter mahjong pgsoft aws reaksi sistem putaran harian aws scatter hitam jam malam analisa aws sisi lain mahjong ways2 aws strategi berani atau santai aws strategi scatter hitam wins3 aws teknik spin win starlight princess aws transisi alur putaran harian aws arsitektur stabil mahjong wins3 aws baca perilaku sistem mahjong aws mental target 17juta wins3 aws perkalian besar pragmatic spin aws retrigger panjang mahjong wins3 aws scatter hitam alur mahjong3 aws simbol emas mahjong ways aws teori matematika keputusan mahjong3 aws topologi grid mahjong ways2 aws transisi fase mahjong ways pro investigasi periodik pola big bass splash intensitas hasil evolusi arsitektur mekanik koi gate hiburan digital 2026 paradigma baru multiplier madame destiny prediksi perubahan sesi optimalisasi fitur powernudge ritme sesi target 50 juta dinamika kecepatan putaran simbol bernilai tinggi ways of the qilin rekonstruksi pola grid gates of olympus titik balik algoritma metodologi sinkronisasi simbol emas treasures of aztec durasi sesi interpretasi teknis fase simbol wild bandito arena virtual kajian struktural multiplier rise of giza stabilitas performa implementasi disiplin teknis sticky wild the dog house 35 juta dekonstruksi mekanik eskalasi simbol caishen wins transisi sistem mekanisme sinkronisasi putaran lucky neko pengembalian nilai framework analisis formasi wild ganesha fortune logika komputasi navigasi alur multiplier 5 lions megaways fase kritis efektivitas pemetaan jalur buffalo king stabilitas algoritma e4 rahasia tempo spin mahjong wins kenapa main terburu buru bisa gagal bonus e4 strategi aman mahjong wins 3 dengan perhitungan modal e4 strategi berbasis algoritma untuk target tinggi rekonstruksi pola pertahanan rise of samurai optimasi performa analisis cluster multiplier fruit party efisiensi putaran teknik pengambilan keputusan real time spaceman akurasi target pemetaan variasi multiplier 5 lions megaways pengembalian hasil analisis respin mekanik cleocatra keberlanjutan durasi bermain metodologi penangkapan simbol big bass splash ritme algoritma interpretasi teknis dinamika multiplier madame destiny arah putaran eksplorasi pengganda nilai wild bounty showdown target strategis 50 juta analisis frekuensi multiplier starlight princess akumulasi nilai strategi pengaturan saldo sugar rush 1000 target 70 juta e4 pendekatan terukur dan evaluasi rtp modern e4 pola disiplin mahjong wins 2 dengan mindset juara e4 pola pengelolaan dana cerdas mahjong wins 3 e4 pola rtp stabil mahjong wins yang viral tembus 30 juta e4 pola slow spin mahjong wins yang disebut lebih efektif e4 rahasia pengaturan modal agar tidak cepat habis aws fenomena tumbling mahjong pgsoft aws jam bermain gates olympus aws lucky neko ritme scatter aws momentum malam sweet bonanza aws perkalian scatter tumbling mahjong aws intensitas scatter rtp mahjong2 aws spam spin berkala mahjong wins3 aws strategi inti wins1 luckyneko aws titik bet putaran mahjong wins3 aws tumbling perkalian mahjong awsbet aws investasi rtp scatter mahjong1 aws kronologi scatter hitam wins3 aws observasi luckyneko starlight princess aws scatter pertama wins1 viral aws sinkronisasi naga emas mahjong aws rtp tinggi scatter mahjong wins2 aws scatter hitam rtp jam mahjong aws spin biasa strategi mahjong wins aws teknik spam spin mahjong aws tempo spin cepat mahjong ways MPOGALAXY ABC1131 Bandar Slot Togel Abc1131 Slot Mpo Toto Togel ABC1131 - MPO SLOT mix parlay agen slot qris ABC1131 mpoxo link slot mahjong mpo slot slot depo 5k slot deposit 1000 slot thailand asiaklub macauklub pondok88 garuda76 heylink macauklub heylink asiaklub heylink hksbet kapten76 heylink garuda76 heylink pondok88 heylink timpondok88 heylink mpoxo mpoxo Awsbet rawit303 mpoxl viral asiaklub viral macauklub viral garuda76 viral pondok88 ASLI777 sakura76 baru slot gacor hari ini bathroomremodelingidea djakarta-miningclub abc1131 abc1131 ABC1131 At-Taujih; Jurnal Bimbingan Konseling Islam rtp mpoxo abc1131 slot viral

Science Report – August 4th

 In Science Report

HAUGHTON IMPACT STRUCTURE AND EVIDENCE OF PRIMITIVE LIFE

By Anushree Srivastava – Crew Biologist

Investigating the impact-induced hydrothermal gypsum deposits in Haughton Impact crater is one of my principal objectives as Mars-based scientist. With our Crew Geologist Dr Jon Clarke and our Earth-based scientist Dr Alfonso Davila of NASA Ames Research Centre and SETI Institute, I am conducting this study to understand the possibility of any preserved biosignatures in those hydrothermal sulfates. Haughton Impact structure was carved when a large rock collided with the earth about 39 million years ago near what we call now the Canadian High Arctic (75°22’N, 89°41’W). The 24 km diameter crater lies in Devon Island that is described as the largest uninhabited island in the world.

Impact craters have always been the hot spots for astrobiologists to look for the preservation of life via volcanic or hydrothermal processes and to establish an analogy for extraterrestrial sites where primitive life could evolve and preserved. The Miocene Haughton structure hosts the well-preserved history of impact-generated hydrothermal activity and sulfate crystallization. Gordon Osinski, Pascal Lee and Charles Cockell have extensively studied and documented the sulfate deposits of Haughton crater. Interestingly, they demonstrated the microbial colonization in sulfate crystals and those microbes further modify the structure of the crystal to find a favourable niche to survive. Those microbial communities were found to be grown in situ and identified primarily as cyanobacteria.


Figure 1: Cell structure of cyanobacteria growing in situ in gypsum crystals. (Parnell et al., 2005)

So, Dr Jon Clarke and I planned an extra-vehicular activity (EVA) to the site which is described as “impact supersite” by Gordon Osinski. The supersite is located near the middle of the Haughton crater and is about 10 km drive from FMARS. I intended to sample the sulfate deposits from the supersite to investigate any viable or fossilized signatures of life originated and thrived during impact-induced hydrothermal event in the past. We sampled gypsum-bearing evaporites from outcrops belong to the mid-Ordovician Bay Fiord Formation (39 mya). According to Thorsteinsson et al (1987) Bay Fiord Formation is mainly composed of limestone/dolomite and of argillaceous/silty and evaporitic nature. The Formation is divisible in four members and have been categorised as A to D. Only the member A consists of gypsum/anhydrite deposition.


Figure 2: Anushree and Jon on EVA investigating gypsum beds. (Image Credit: Paul Knightly)


Figure 3: Haughton Impact crater. Indicating FMARS and Hydrothermal Supersite. Sulfates are one of the prominent salt species that have been detected on Mars.

In the Bay Fiord Formation the gypsum was deposited through evaporation of seawater. Elsewhere in the crater gypsum is known to have formed as a result of the impact driven hydrothermal activity. Both the processes are considered to be analogous to the sulfate precipitation from the low-temperature aqueous fluid on Mars. So, any microbial life that was present in the brine could have found refuge in tiny fluid-inclusions of the gypsum crystals in the past or potentially left their marks in the depository layers while degradation. Hence, it is fascinating to explore the idea
of preservation of biomarkers in evaporite rocks.


Figure 4: Impact Supersite. (Image Credit: Dr Jon Clarke)


Figure 5: A. Gypsum veins at Hydrothermal Supersite in Devon Island (Image Credit: Dr Jon Clarke). B. Gypsum veins at the Endeavour Crater on Mars (Image Credit: NASA JPL/Caltech).

Further Readings:

Cockell, C. S., Osinski,G. R., Banerjee, N. R., Howard, K. T., Gilmour, I., and Watson, J.S. 2010. The microbe–mineral environment and gypsum neogenesis in a weathered polar evaporite. Geobiology 8, 293–308.

Mayr, U., de Freitas, T., Beauchamp, B., and Eisbacher,G. 1998. The Geology of Devon Island North Of 76°, Canadian Arctic Archipelago. Geological Survey of Canada Bulletin 526, 500p.

Morrow D. W. and Kerr, J. W. 1977. Stratigraphy and sedimentology of Lower Paleozoic Formations near Prince Alfred Bay, Devon Island. Geological Survey of Canada Bulletin 254, 122p.

Parnell et al 2005. Microbial Preservation in Sulfates in the Haughton Impact Structure suggest target in search for microbial life on Mars. Lunar and Planetary Science XXXVI

Squyres et al 2012. Ancient Impact and Aqueous Processes at Endeavour Crater, Mars. Science 336, 570-575p.

Thorsteinsson, R. and Mayr, U. 1987. The sedimentary rocks of Devon Island, Canadian Arctic Archipelago. Geological Survey of Canada Bulletin 411, 182p.