distribusi scatter mahjong wins 3 dynamic simbol mahjong wins 3 berbicara tren varians mahjong wins 3 sering jackpot ss kerangka kerja kemenangan mahjong ways ss ketika kesederhanaan menang mahjong ways ss kompleksitas terstruktur mahjong ways2 ss logika simbol mahjong ways ss data berbicara tren varians ss dinamika simbol mahjong ways 2 ss distribusi scatter mw 2 analisis ss ekosistem pembayaran mw2 ss ekosistem simbol mahjong ways ss jejak digital mahjong ways alasan aws adaptasi budaya mahjong ways 2 aws fakta reputasi mahjong ways 2 aws inovasi kreatif pg soft mahjong aws kestabilan emosi mahjong wins 3 aws keunggulan wild bounty tepat waktu aws manajemen risiko tumbling mahjong aws pemanfaatan data analitik mahjong ways aws pengaturan taruhan grafik mahjong ways 2 aws rahasia baca pola scatter aws sinkronisasi strategi rtp mahjong mahjong wins 3 mode scatter boost auto perkalian x500 mahjong dua bagi bagi scatter tanpa henti dengan trik rahasia catatan kemenangan tiga juta rupiah diskusi pecinta strategi ketepatan waktu mempengaruhi psikologi permainan digital evolusi strategi baccarat mahjong wins tren perilaku sensasi bermain mahjong wins 3 alur kemenangan alami integrasi analisis data pemilihan waktu keputusan presisi identifikasi struktur permainan mahjong ways pola kemenangan ss dari masa ke masa mw ss bukan sekadar kenangan ss blueprint simbol mahjong ways ss arsitektur simbol mahjong ways ss arsitektur kemenangan mahjong ways ss antara nostalgia dan konsistensi ss anatomi free spin mahjong ways 2 ss algoritma pola mahjong ways 2 filter narasi hiburan digital scroll santai tanpa tekanan bedah tuntas algoritma balikan sistem strategi pemain profesional alur transisi pola dinamis koi gates ritme sesi ss analisis matematis mahjong ways 2 ss anatomi simbol mahjong ways memahami ss variasi volatilitass mahjong wins3 ss victory engine mahjong ways algoritma ss warisan digital mahjong ways mengapa ss winflow mahjong ways mekanisme aws analisis grid non linear mahjong wins 3 aws analisis teknikal grafik mahjong ways aws antisipasi stabilitas rtp mahjong ways aws panduan teknis pola permainan modern aws strategi forum mahjong wins 2 aws analisis waktu terbaik mahjong ways aws eksperimen mahjong ways bermain santai aws fokus bermain estetika visual pgsoft aws transisi simbol tengah mahjong ways 2 aws update rtp mahjong ways terbaru mahjong wins tiga tetap bertahan di tengah persaingan game baru mahjong wins meningkat singnifikan dalam beberapa hari terakhir ABC1131 Bandar Slot Togel Abc1131 Slot Mpo Toto Togel ABC1131 - MPO SLOT slot thailand mix parlay agen slot qris slot qris dana ABC1131 mpoxo link slot mahjong mpo slot slot depo 5k slot deposit 1000 slot thailand asiaklub macauklub pondok88 garuda76 heylink macauklub heylink asiaklub heylink hksbet kapten76 heylink garuda76 heylink pondok88 heylink timpondok88 heylink mpoxo mpoxo AWSBET rawit303 mpoxl viral asiaklub viral macauklub viral garuda76 viral pondok88 ASLI777 Asli777 Mpogalaxy MPOGALAXY sakura76 baru slot gacor hari ini bathroomremodelingidea djakarta-miningclub abc1131 abc1131 ABC1131 abc1131 At-Taujih; Jurnal Bimbingan Konseling Islam MPO SLOT rtp mpoxo abc1131 slot viral abc1131 - sopadec abc1131 slot777 lundbergdesign.com

Science Report – August 4th

 In Science Report

HAUGHTON IMPACT STRUCTURE AND EVIDENCE OF PRIMITIVE LIFE

By Anushree Srivastava – Crew Biologist

Investigating the impact-induced hydrothermal gypsum deposits in Haughton Impact crater is one of my principal objectives as Mars-based scientist. With our Crew Geologist Dr Jon Clarke and our Earth-based scientist Dr Alfonso Davila of NASA Ames Research Centre and SETI Institute, I am conducting this study to understand the possibility of any preserved biosignatures in those hydrothermal sulfates. Haughton Impact structure was carved when a large rock collided with the earth about 39 million years ago near what we call now the Canadian High Arctic (75°22’N, 89°41’W). The 24 km diameter crater lies in Devon Island that is described as the largest uninhabited island in the world.

Impact craters have always been the hot spots for astrobiologists to look for the preservation of life via volcanic or hydrothermal processes and to establish an analogy for extraterrestrial sites where primitive life could evolve and preserved. The Miocene Haughton structure hosts the well-preserved history of impact-generated hydrothermal activity and sulfate crystallization. Gordon Osinski, Pascal Lee and Charles Cockell have extensively studied and documented the sulfate deposits of Haughton crater. Interestingly, they demonstrated the microbial colonization in sulfate crystals and those microbes further modify the structure of the crystal to find a favourable niche to survive. Those microbial communities were found to be grown in situ and identified primarily as cyanobacteria.


Figure 1: Cell structure of cyanobacteria growing in situ in gypsum crystals. (Parnell et al., 2005)

So, Dr Jon Clarke and I planned an extra-vehicular activity (EVA) to the site which is described as “impact supersite” by Gordon Osinski. The supersite is located near the middle of the Haughton crater and is about 10 km drive from FMARS. I intended to sample the sulfate deposits from the supersite to investigate any viable or fossilized signatures of life originated and thrived during impact-induced hydrothermal event in the past. We sampled gypsum-bearing evaporites from outcrops belong to the mid-Ordovician Bay Fiord Formation (39 mya). According to Thorsteinsson et al (1987) Bay Fiord Formation is mainly composed of limestone/dolomite and of argillaceous/silty and evaporitic nature. The Formation is divisible in four members and have been categorised as A to D. Only the member A consists of gypsum/anhydrite deposition.


Figure 2: Anushree and Jon on EVA investigating gypsum beds. (Image Credit: Paul Knightly)


Figure 3: Haughton Impact crater. Indicating FMARS and Hydrothermal Supersite. Sulfates are one of the prominent salt species that have been detected on Mars.

In the Bay Fiord Formation the gypsum was deposited through evaporation of seawater. Elsewhere in the crater gypsum is known to have formed as a result of the impact driven hydrothermal activity. Both the processes are considered to be analogous to the sulfate precipitation from the low-temperature aqueous fluid on Mars. So, any microbial life that was present in the brine could have found refuge in tiny fluid-inclusions of the gypsum crystals in the past or potentially left their marks in the depository layers while degradation. Hence, it is fascinating to explore the idea
of preservation of biomarkers in evaporite rocks.


Figure 4: Impact Supersite. (Image Credit: Dr Jon Clarke)


Figure 5: A. Gypsum veins at Hydrothermal Supersite in Devon Island (Image Credit: Dr Jon Clarke). B. Gypsum veins at the Endeavour Crater on Mars (Image Credit: NASA JPL/Caltech).

Further Readings:

Cockell, C. S., Osinski,G. R., Banerjee, N. R., Howard, K. T., Gilmour, I., and Watson, J.S. 2010. The microbe–mineral environment and gypsum neogenesis in a weathered polar evaporite. Geobiology 8, 293–308.

Mayr, U., de Freitas, T., Beauchamp, B., and Eisbacher,G. 1998. The Geology of Devon Island North Of 76°, Canadian Arctic Archipelago. Geological Survey of Canada Bulletin 526, 500p.

Morrow D. W. and Kerr, J. W. 1977. Stratigraphy and sedimentology of Lower Paleozoic Formations near Prince Alfred Bay, Devon Island. Geological Survey of Canada Bulletin 254, 122p.

Parnell et al 2005. Microbial Preservation in Sulfates in the Haughton Impact Structure suggest target in search for microbial life on Mars. Lunar and Planetary Science XXXVI

Squyres et al 2012. Ancient Impact and Aqueous Processes at Endeavour Crater, Mars. Science 336, 570-575p.

Thorsteinsson, R. and Mayr, U. 1987. The sedimentary rocks of Devon Island, Canadian Arctic Archipelago. Geological Survey of Canada Bulletin 411, 182p.